Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(8): 3869-3882, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38355131

RESUMEN

In this study, we propose a novel long short-term memory (LSTM) neural network model that leverages color features (HSV: hue, saturation, value) extracted from street images to estimate air quality with particulate matter (PM) in four typical European environments: urban, suburban, villages, and the harbor. To evaluate its performance, we utilize concentration data for eight parameters of ambient PM (PM1.0, PM2.5, and PM10, particle number concentration, lung-deposited surface area, equivalent mass concentrations of ultraviolet PM, black carbon, and brown carbon) collected from a mobile monitoring platform during the nonheating season in downtown Augsburg, Germany, along with synchronized street view images. Experimental comparisons were conducted between the LSTM model and other deep learning models (recurrent neural network and gated recurrent unit). The results clearly demonstrate a better performance of the LSTM model compared with other statistically based models. The LSTM-HSV model achieved impressive interpretability rates above 80%, for the eight PM metrics mentioned above, indicating the expected performance of the proposed model. Moreover, the successful application of the LSTM-HSV model in other seasons of Augsburg city and various environments (suburbs, villages, and harbor cities) demonstrates its satisfactory generalization capabilities in both temporal and spatial dimensions. The successful application of the LSTM-HSV model underscores its potential as a versatile tool for the estimation of air pollution after presampling of the studied area, with broad implications for urban planning and public health initiatives.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Memoria a Corto Plazo , Contaminación del Aire/análisis , Redes Neurales de la Computación , Carbono
2.
Sci Total Environ ; 915: 170008, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38220016

RESUMEN

A SEM/EDX based automated measurement and classification algorithm was tested as a method for the in-depth analysis of micro-environments in the Munich subway using a custom build mobile measurements system. Sampling was conducted at platform stations, to investigate the personal exposure of commuters to subway particulate matter during platform stays. EDX spectra and morphological features of all analyzed particles were automatically obtained and particles were automatically classified based on pre-defined chemical and morphological boundaries. Source apportionment for individual particles, such as abrasion processes at the wheel-brake interface, was partially possible based on the established particle classes. An average of 98.87 ± 1.06 % of over 200,000 analyzed particles were automatically assigned to the pre-defined classes, with 84.68 ± 16.45 % of particles classified as highly ferruginous. Manual EDX analysis further revealed, that heavy metal rich particles were also present in the ultrafine size range well below 100 nm.

3.
Environ Sci Technol ; 57(37): 13948-13958, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37671477

RESUMEN

Humic-like substances (HULIS), known for their substantial impact on the atmosphere, are identified in marine diesel engine emissions obtained from five different fuels at two engine loads simulating real world scenarios as well as the application of wet sulfur scrubbers. The HULIS chemical composition is characterized by electrospray ionization (ESI) ultrahigh resolution mass spectrometry and shown to contain partially oxidized alkylated polycyclic aromatic compounds as well as partially oxidized aliphatic compounds, both including abundant nitrogen- and sulfur-containing species, and clearly different to HULIS emitted from biomass burning. Fuel properties such as sulfur content and aromaticity as well as the fuel combustion efficiency and engine mode are reflected in the observed HULIS composition. When the marine diesel engine is operated below the optimum engine settings, e.g., during maneuvering in harbors, HULIS-C emission factors are increased (262-893 mg kg-1), and a higher number of HULIS with a shift toward lower degree of oxidation and higher aromaticity is detected. Additionally, more aromatic and aliphatic CHOS compounds in HULIS were detected, especially for high-sulfur fuel combustion. The application of wet sulfur scrubbers decreased the HULIS-C emission factors by 4-49% but also led to the formation of new HULIS compounds. Overall, our results suggest the consideration of marine diesel engines as a relevant regional source of HULIS emissions.


Asunto(s)
Atmósfera , Navíos , Biomasa , Sustancias Húmicas , Azufre
4.
Environ Pollut ; 316(Pt 1): 120529, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341825

RESUMEN

This study aimed to evaluate the levels and phenomenology of equivalent black carbon (eBC) at the city center of Augsburg, Germany (01/2018 to 12/2020). Furthermore, the potential health risk of eBC based on equivalent numbers of passively smoked cigarettes (PSC) was also evaluated, with special emphasis on the impact caused by the COVID19 lockdown restriction measures. As it could be expected, peak concentrations of eBC were commonly recorded in morning (06:00-8:00 LT) and night (19:00-22:00 LT) in all seasons, coinciding with traffic rush hours and atmospheric stagnation. The variability of eBC was highly influenced by diurnal variations in traffic and meteorology (air temperature (T), mixing-layer height (MLH), wind speed (WS)) across days and seasons. Furthermore, a marked "weekend effect" was evidenced, with an average eBC decrease of ∼35% due to lower traffic flow. During the COVID19 lockdown period, an average ∼60% reduction of the traffic flow resulted in ∼30% eBC decrease, as the health risks of eBC exposure was markedly reduced during this period. The implementation of a multilinear regression analysis allowed to explain for 53% of the variability in measured eBC, indicating that the several factors (e.g., traffic and meteorology) may contribute simultaneously to this proportion. Overall, this study will provide valuable input to the policy makers to mitigate eBC pollutant and its adverse effect on environment and human health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Control de Enfermedades Transmisibles , Hollín/análisis , Medición de Riesgo , Carbono/análisis , Material Particulado/análisis , Contaminación del Aire/análisis
5.
Environ Pollut ; 316(Pt 1): 120526, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341831

RESUMEN

The emissions of marine diesel engines have gained both global and regional attentions because of their impact on human health and climate change. To reduce ship emissions, the International Maritime Organization capped the fuel sulfur content of marine fuels. Consequently, either low-sulfur fuels or additional exhaust gas cleaning devices for the reduction in sulfur dioxide (SO2) emissions became mandatory. Although a wet scrubber reduces the amount of SO2 significantly, there is still a need to consider the reduction in particle emissions directly. We present data on the particle removal efficiency of a scrubber regarding particle number and mass concentration with different marine fuel types, marine gas oil, and two heavy fuel oils (HFOs). An open-loop sulfur scrubber was installed in the exhaust line of a marine diesel test engine. Fine particulate matter was comprehensively characterized in terms of its physical and chemical properties. The wet scrubber led up to a 40% reduction in particle number, whereas a reduction in particle mass emissions was not generally determined. We observed a shift in the size distribution by the scrubber to larger particle diameters when the engine was operated on conventional HFOs. The reduction in particle number concentrations and shift in particle size were caused by the coagulation of soot particles and formation/growing of sulfur-containing particles. Combining the scrubber with a wet electrostatic precipitator as an additional abatement system showed a reduction in particle number and mass emission factors by >98%. Therefore, the application of a wet scrubber for the after-treatment of marine fuel oil combustion will reduce SO2 emissions, but it does not substantially affect the number and mass concentration of respirable particulate matters. To reduce particle emission, the scrubber should be combined with additional abatement systems.


Asunto(s)
Contaminantes Atmosféricos , Aceites Combustibles , Aerosoles , Contaminantes Atmosféricos/análisis , Gasolina/análisis , Material Particulado/análisis , Azufre/análisis , Emisiones de Vehículos/análisis
6.
Environ Int ; 166: 107366, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35763991

RESUMEN

The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with ß-pinene SOA (SOAßPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAßPin-SP mostly contained oxygenated aliphatic compounds from ß-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAßPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the ß-pinene-derived SOA.

7.
Environ Health Perspect ; 130(2): 27003, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35112925

RESUMEN

BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (ß-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and ß-pinene (SOAßPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAßPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with ß-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.


Asunto(s)
Contaminantes Atmosféricos , Hollín , Aerosoles/análisis , Anciano , Envejecimiento , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Células Endoteliales/química , Células Endoteliales/metabolismo , Humanos , Pulmón/metabolismo , Material Particulado/análisis
8.
Environ Sci Pollut Res Int ; 27(31): 38631-38643, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32623683

RESUMEN

The Moravian-Silesian region of the Czech Republic with its capital city Ostrava is a European air pollution hot spot for airborne particulate matter (PM). Therefore, the spatiotemporal variability assessment of source contributions to aerosol particles is essential for the successful abatement strategies implementation. Positive Matrix Factorization (PMF) was applied to highly-time resolved PM0.15-1.15 chemical composition (1 h resolution) and particle number size distribution (PNSD, 14 nm - 10 µm) data measured at the suburban (Ostrava-Plesná) and urban (Ostrava-Radvanice) residential receptor sites in parallel during an intensive winter campaign. Diel patterns, meteorological variables, inorganic and organic markers, and associations between the chemical composition factors and PNSD factors were used to identify the pollution sources and their origins (local, urban agglomeration and regional). The source apportionment analysis resolved six and four PM0.15-1.15 sources in Plesná and Radvanice, respectively. In Plesná, local residential combustion sources (coal and biomass combustion) followed by regional combustion sources (residential heating, metallurgical industry) were the main contributors to PM0.15-1.15. In Radvanice, local residential combustion and the metallurgical industry were the most important PM0.15-1.15 sources. Aitken and accumulation mode particles emitted by local residential combustion sources along with common urban sources (residential heating, industry and traffic) were the main contributors to the particle number concentration (PNC) in Plesná. Additionally, accumulation mode particles from local residential combustion sources and regional pollution dominated the particle volume concentration (PVC). In Radvanice, local industrial sources were the major contributors to PNC and local coal combustion was the main contributor to PVC. The source apportionment results from the complementary datasets elucidated the relevance of highly time-resolved parallel measurements at both receptor sites given the specific meteorological conditions produced by the regional orography. These results are in agreement with our previous studies conducted at this site. Graphical abstract.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Aerosoles/análisis , Ciudades , República Checa , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis
9.
Sci Total Environ ; 722: 137632, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32199355

RESUMEN

Generally, there are only a few fixed air quality monitoring stations installed in villages or rural areas and only a few studies on small-scale variations in air pollution have been described in detail, which make it difficult to estimate human exposure in such environments and related adverse health effects. Moreover, biomass combustion can be an important source of air pollution in rural areas, comparable to vehicle and industrial emissions in urban planning. And their air pollutants are mainly affected by local sources. For this reason, a survey on rural air pollution was carried out in this study. Therefore, portable, battery-powered monitoring devices were used to measure particulate matter (PM10, PM2.5, PM1, particle number concentration, and black carbon) in order to study air quality in rural communities. The focus of the investigations was to explore the application of mobile monitoring equipment in small-scale environments, compare the differences in rural air pollutants between two neighboring villages in two countries, and the identification of pollution hotspots. The measurements were carried out in November 2018 in two villages on the German-Czech border. Over a period of four days, 21 mobile measurements along fixed routes were carried out simultaneously at both locations. The analysis of the data revealed significant differences in PN and PM concentrations in rural air pollutants between the two countries. The spatial and temporal distribution of air pollution hotspots in the Czech village was higher than that in the German village. The relationships between the measurement parameters were weak but highly significant and the meteorological parameters can effect air pollution. Overall, the results of this study show that mobile measurements are suitable for effectively recording and distinguishing spatial and temporal characteristics of air quality.

10.
Environ Pollut ; 202: 135-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25818093

RESUMEN

This study quantified the temporal variability of concentration of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs), genotoxicity, oxidative DNA damage and dioxin-like activity of the extractable organic matter (EOM) of atmospheric aerosol particles of aerodynamic diameter (dae, µm) coarse (1 < dae < 10), upper- (0.5 < dae < 1) and lower-accumulation (0.17 < dae < 0.5) and ultrafine (<0.17) fractions. The upper accumulation fraction formed most of the aerosol mass for 22 of the 26 study days and contained ∼44% of total c-PAHs, while the ultrafine fraction contained only ∼11%. DNA adduct levels suggested a crucial contribution of c-PAHs bound to the upper accumulation fraction. The dioxin-like activity was also driven primarily by c-PAH concentrations. In contrast, oxidative DNA damage was not related to c-PAHs, as a negative correlation with c-PAHs was observed. These results suggest that genotoxicity and dioxin-like activity are the major toxic effects of organic compounds bound to size segregated aerosol, while oxidative DNA damage is not induced by EOM.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aductos de ADN/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Aerosoles , Contaminantes Atmosféricos/toxicidad , ADN/química , Aductos de ADN/química , Oxidación-Reducción , Tamaño de la Partícula , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...